A Learning Framework of Nonparallel Hyperplanes Classifier
نویسندگان
چکیده
A novel learning framework of nonparallel hyperplanes support vector machines (NPSVMs) is proposed for binary classification and multiclass classification. This framework not only includes twin SVM (TWSVM) and its many deformation versions but also extends them into multiclass classification problem when different parameters or loss functions are chosen. Concretely, we discuss the linear and nonlinear cases of the framework, in which we select the hinge loss function as example. Moreover, we also give the primal problems of several extension versions of TWSVM's deformation versions. It is worth mentioning that, in the decision function, the Euclidean distance is replaced by the absolute value |w (T) x + b|, which keeps the consistency between the decision function and the optimization problem and reduces the computational cost particularly when the kernel function is introduced. The numerical experiments on several artificial and benchmark datasets indicate that our framework is not only fast but also shows good generalization.
منابع مشابه
Newton's method for nonparallel plane proximal classifier with unity norm hyperplanes
In our previous research we observed that the nonparallel plane proximal classifier (NPPC) obtained by minimizing two related regularized quadratic optimization problems performs equally with that of other support vector machine classifiers but with a very lower computational cost. NPPC classifies binary patterns by the proximity of it to one of the two nonparallel hyperplanes. Thus to calculat...
متن کاملNonparallel Hyperplanes Support Vector Regressor
Motivated by nonparallel hyperplanes support vector machine (NHSVM), a new regression method of data, named as nonparallel hyperplanes support vector regression (NHSVR), is proposed in this paper. The advantages of NHSVR have two aspects, one is considering the minimization of structure risk by introducing a regularization term in objective function, and another is finding two nonparallel hyper...
متن کاملClassification of imprecise data using interval Fisher discriminator
In this paper, an imprecise data classification is considered using new version of Fisher discriminator, namely interval Fisher. In the conventional formulation of Fisher, elements of within-class scatter matrix (related to covariance matrix between clusters) and between-class scatter matrix (related to covariance matrix of centers of clusters) have single values; but in the interval Fisher, th...
متن کاملIntelligent and Robust Genetic Algorithm Based Classifier
The concepts of robust classification and intelligently controlling the search process of genetic algorithm (GA) are introduced and integrated with a conventional genetic classifier for development of a new version of it, which is called Intelligent and Robust GA-classifier (IRGA-classifier). It can efficiently approximate the decision hyperplanes in the feature space. It is shown experime...
متن کاملOn families of quadratic surfaces having fixed intersections with two hyperplanes
In this paper we investigate families of quadrics that have fixed intersections with two given hyperplanes. The cases when the two hyperplanes are parallel and when they are nonparallel are discussed. We show that these families can be described with only one parameter. In particular we show how the quadrics are transformed as the parameter changes. This research was motivated by an application...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2015 شماره
صفحات -
تاریخ انتشار 2015